

User Guide

Product Introduction

Adopting laser scattering principle to achieve accurate measurement, it can monitor PM1.0, PM2.5, PM10 and TSP at the same time.Compact structure, easy to install, waterproof and insect-proof, with temperature and humidity compensation, it can effectively reduce the influence of temperature and humidity on the measurement value, improve the accuracy of measurement in high humidity climatic environment, and can continuously monitor airborne particulate matter.

Use Case Scenarios

The sensor is suitable for outdoor weather stations, dust monitoring, building construction, industrial plants and other places.

Features

- 1. Laser principle detection, stable performance and accurate data.
- 2. Pump sampling and monitoring, heating and dehumidification, stable performance and long service life.
- 3. High sensitivity, small error, good consistency, strong anti-interference ability.

Product Specifications

	Sensor				
Model	UB-PM-N1				
Power Supply	DC 12V/2A				
Particle Measurement Range	0.3~1.0μm; 1.0~2.5μm; 2.5~10μm; > 10μm				
Particle Counting Efficiency	50%@0.3μm 98%@≥0.5μm				
Effective Measurement Range	PM2.5, PM10: 0~1000μg/m³; TSP: 0~2000μg/m³				
Maximum Measurement Range	PM2.5, PM10: ≥5000μg/m³; TSP: ≥10000μg/m³				
Resolution	1μg/m³				
Integrated Response Time	≤10s				
Working Environment	-30~70°C, 0-95%RH				
Relay Output	AC 250V/1A, DC 30V/1A				
	Sampler				
Height Dimension	345mm				
Maximum Diameter	95mm				
Heating Power	1A				
Power Supply	DC 12V				
Temperature Range	20~70°C				
Efficacy	Heating and dehumidification to ensure data accuracy				
Material	Oxidation sandblasted aluminium				
Maximum inrush current	Maximum inrush current value (@12V): ≤2A				

Wiring Instruction

Communication protocols

1. Communication basic parameters

Communication Basic Parameter						
Coding System	8-bit binary					
Data Bit	8 bits					
Parity Checking Bit	none					
Stop Bit	1 bit					
Error Checking	CRC Check					
Baud Rate	1200 bit/s, 2400 bit/s, 4800 bit/s, 9600 bit/s (default), 19200 bit/s					

2. Data Frame Format

The Modbus-RTU communication protocol is used in the following format:

■ Initial structure \geq 4 bytes in time.

■ Address code: 1 byte, default 0xA1.

■ Function code: 1 byte, support function code 0x03 (read only) and 0x06 (read/write).

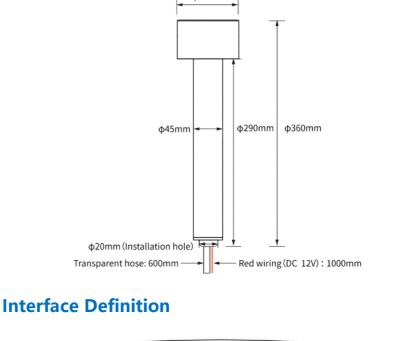
■ Data area: N bytes, 16-bit data, high byte comes first.

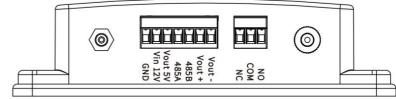
■ Error check: 16-bit CRC code.

■ End structure \geq 4 bytes of time.

Request										
Slave Addres	s Function	Code	Register Address		No. of Register	c CRC	CRC LSB		CRC MSB	
1 byte	1 byte	е	2 bytes		2 bytes	1 by	1 byte		1 byte	
Response										
Slave Address	Function Code	No. of Bytes		Content 1	Content 1	•••	Content n		CRC	
1 byte	1 byte	1 byte		2 bytes	2 bytes		2 byt	es	2 bytes	

3. Register Address


	Register Address						
Address (hex)	Content	Register Length	Function Code	Description of definitions			
0x0000	PM1.0 Concentration	1	03	Integer			
0x0001	PM2.5 Concentration	1	03	Integer			
0x0002	PM10 Concentration	1	03	Integer			
0x0003	TSP Concentration	1	03	Integer			
0x0020	Batch Calibration DATA	1	06	DATA stands for the proportion of PM data, can be			


0x0021	PM1.0 Calibration Factor DATA	1	06	set arbitrarily, default 0x64
0x0022	PM2.5 Calibration Factor DATA	1	06	DATA=0x00, original value*0 DATA=0x32, original value *0.5
0x0023	PM10 Calibration Factor DATA	1	06	DATA=0x52, original value*1
0x0024	TSP Calibration Factor DATA	1	06	
0x0030	Cyclic Acquisition	1	06	1: On, 0: Off (default: On)
0x0031	Acquisition Cycle Time	1	06	1~600 minutes (default: 1 minute) Pump running for the first 45s of each acquisition cycle
0x0035	Heating Control	1	06	1: On, 0: Off (default: On, no Saving in power failure)
0x003A	Relay Control	1	06	1: On, 0: Off (default: On, no Saving in power failure)
0x0040	Pump Control	1	06	1: On, 0: Off (default: On, no Saving in power failure)
0x0042	Pump Motor Duty Cycle Adjustment	1	06	0~100 (default 0x4C, about 1.5 L/min)
0x0064	Address	1	06	1 ~ 255
0x0065	Baud Rate	1	06	1: 4800, 2: 9600(default), 3: 14400, 4: 19200, 5: 38400, 6: 115200
0x0085	Device Factory Reset		06	1: Reset

Interface Diagram

Sampler Inlet -DC12V/2A Outlet-Relay interface ► RS485 interface

Sampler Dimension

NOTE

- 1. Do not pull the sensor lead wire, do not drop or hit the sensor violently.
- 2. Please clean it regularly in the process of using to avoid debris blocking the sampling head.
- 3. In order to enhance the effective working time of the equipment, it is recommended to collect once every 5 minutes.